
I!, AD-A124 280 WHAT IS A SIIEIWAWLE NUINttki - LNVLNUNMLNI tl iJ
(D ESIR ED1 C HARACTE~RISTICS)(U) NAVAL SURFACE WEAPONS

CENTER OAHLGREN VA W P WARNER DEC 82 NSWC/TR-82-465

UNCLASSIF ED F/G 9/2 NL

I l

L II

1114 11111.

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU Of STANDARIS 1963 A

W ATiS A SOFTWARE ENGINEERING
-ENVIRONMENT (SEE)? (DESIRED

CHkRACTERISTICS)

BY WALTER P. WARNER

STRATEGIC SYSTEMS DEPARTMENT

i
DECEMBER 1982

Approved for public release; distribution unlimited.

8 DTIC

LA NAVAL SURFACE WEAPONS CENTER
t/ Deblrm, Virginia 22448 0 Silver Spring, Maryland 2 10

'U

UNCLASSIFIED
%ECU,'ITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
REPORTDOCUMENTATIONPAGE_ BEFORE COMPLETING FORM

I REPORT NMBER ,)2VT ACC ION NO, 3. A.CIPIENT'S CATALOG NUMBER

NSWC TR-82-465 ?C
4 TITLE (1rd Subtitle) S. TYPE OF REPORT A PERIOD COVERED

WHAT IS A SOFTWARE ENGINEERING ENVIRONMENT
(SEE)? (Desired Characteristics) Final

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(1Wae S. CONTRACT OR GRANT NUMBER(e)

Walter P. Warner

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

AREA A WORK UNIT NUMBERS

Naval Surface Weapons Center (Code K04)
Dahlgren, Virginia 22448 N IF

1I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Naval Surface Weapons Center (Code K04) December 1982

Dahigren, Virginia 22448 IS. NUMBER OF PAGES

21
74 MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of thle report)

UNCLASSIFIED
1Sa. DECL ASSI FICATION/ DOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of thil Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the Abstrct onto- in Block 30, It different from Report)

I SUPPLEMENTARY NOTES

1I KEY WORDS (Continue on reverse side If necessary and identify by block number)

Software
Software engineering

Environments
Tools
Software management

20 ABSTRACT (Continue on reveree side it necessary and identify by block number)

. -- The technology)f developing software has made significant advances in

the p3 st several years. Some supervisors, however, still treat it as if it

were a black art""'and have no notion of how much progress is being made in

the development of computer programs. This can only mean that the software

effort is being performed by archaic methods and without the proper support

tools. This report defines an "environment" for developing software. A

proper "environment" not only aids the developer of the software but also

DD tJAN",3 1473 EITIoOr OI NOV to is OBSOLETE
S N 0102-LF-014-6601 TINCT.ASRSTFTET)

SgCURITY CLASSIFICATION OF THIS PAGE (Man Date fttere)

UNCLASSIFIED -
SECURITY CLASSIFICATION OF THIS PAGE (mhen Dlat Entered)

. helps the supervisor in managing the developmentf The various phases or

software development are described briefly and the characteristics of a

facility to support the development in each phase are indicated.

UNCLASSIFIED
SECURITY CLASSIFICATION OF'THIS PAGE("Il Date Entered)

i

FOREWORD

7his work was conducted as a part of NSC's continual effort to
better understand and improve its methods of developing computer
software. 7he preliminary draft of this report was reviewed by
several of the Center's personnel, knowledgeable in the field, who
made many valuable contributions.

Released by:

0. F. Braxton, Head
Strategic Systems Department

Accession For

NTIS " -GRA&I
rTIC TAB

our, o-d
Jufltif icr~t -

Availahil1ity Codes

Av, I iand/or
'Dirt Special

iii. i

DEFINITION~ .* 2

SOFWAE DVEOPMNTAND MADMI~ANCE PRIOLEMS . 3

SOFTWARE ENGINEERI~j PHIfLW3PHY 3

GENERAL REDUIRDEE7 5

IE SOFTWARE LIFE-CYCLE 6

CONICEPT DEVELOPMENT 6

RBDUIRflEM SPECIFICATION. 7

SOFTWARE SYSTEM DESIGN. 8

COINGZ AND CHECKOUT 9

TESTING 10

CONIFIGURATION MNAGEMET.. 11

PRDJE)CT MANAGEENT ONSIDERATIONS 11

REFEMCE 13

BIBLOGRAPHY. 14

DIS1TBTION...... (1)

PAM sCw3 nu

NSWC 7R 82-465

BACKGROUND

The technology of developing software has made significant
advances in the past several years. Some supervisors, however, still
treat it as if it were a "black art" and have no notion of how much
progress is being made in the development of computer programs. This
can only mean that the software effort is being performed by archaic
methods and without the proper support tools. This report defines an
"environment" for developing software. A proper "enviroment" not
only aids the developer of the software but also helps the supervisor
in managing the development and supports the creation of maintainable
computer programs.

The cost of developing computer software has become one of the
major expenditures of doing business today. According to the
Government Accounting Office, two-thirds of all federal ADP spending
is for software and related services<l>. The Department of Defense
spent $3 billion for software in 1980<2>. A study in 1979 showed that
NSWC consumed approximately 610 staff-years in the development of
computer software delivered to the Navy and Marine Corps; this
increased to 640 staff-years in 1980. In 1981, there were 1800 "user
numbers" for the Center's mainframe computers. Thus one can see that
in the Federal Government and at the Naval Surface Weapons Center the
development of software is big business.

Studies of software projects have shown that 67% of the life-
cycle cost of a software project (i.e., "cradle to the grave") is
spent on maintenance <1>. Maintenance is defined as correcting
errors nd adding enhancements. It therefore seems that major
consideration during development should be given those things that
will make maintaining the software less costly and time consuming.
This is the philosophy which will be used in defining the requirements
for a generalized SOFIWARE ENGINEERING ENVIRNMENT (SEE).

Software engineering encompasses procedures, practices, and
tools which support the development of computer software. These ideas
did not appear to anyone in a flash of enlightenment as a completed
package with the title "Software Engineering" printed on the front of
it. "Good" programmers have used many of these ideas for years. The
author can recall using the concept of "hierarchal decomposition" back
in the late 1950 's. These ideas have recently been put together in a
package and the name "software engineering" has been attached to them.

The software engineering environment described in this report is
an ideal system. All software development does not warrant the cost
of developing a system of this magnitude. It is true, however, that
we have always greatly underestimated the amount of effort required to
develop software and the more costly the system the more important a

1i

.. ...-- -lam , - IIIIF

NSWC TR 82-465

complete enviroment becomes. The more disciplined the effort becaes
and the more support that is provided by automated tools the greater
the cost savings over the life of the software. If an environment is
already in place it is cost effective to use it for all but the
smallest developments. The underlying concepts and principles of
software engineering should be applied on all software efforts whether
the work is to be done by one person or many.

The system described provides support for all phases of software
development from conception of a system to solve a problem to support
of the software while in operation. Since different projects may get
to the Center in different phases of development, the environment as
described may not apply in its entirety to all projects.

DEFINITION

When the term SOFIWARE ENGINEERING was first used, it was
intended to draw attention to the fact that the development of
software possessed neither the theoretical basis nor the discipline of
engineering fields. The term was also intended to contrast with the
term "computer science", which was perceived to be more concerned with
defining the underlying principles of the application of computers and
software. Software engineering is concerned with the actual
development of software. The most widely accepted definition of
software engineering is:

The establishment and use of sound engineering

principles in order to obtain, economically, software

that is reliable and works efficiently on real

machines. F. L. Bauer<3>

Webster defines enviroment as "the surrounding conditions or
influences." A SOFIWARE ENGINEERING ENVIRONMENT (SEE) is therefore
defined as the set of all the tools necessary to develop computer
software using the principles of "software engineering." These tools
should be automated (on a computer), integrated (the output of each
tool in a format compatible with the input of each of its logical
successors), and user friendly. As someone once put it, "a software
engineering enviroment is a computer-aided design system for
software."

2

NSWC TR 82-465

SOFTIWARE DLVIWPHMT AND MAINTENANCE PROBLEMS

Many of the problems with software have been attributed to poor
management practices during the development phases. This is probably
true; however, it has not always been the fault of the manager. In
the past, software development has been a very individualized effort:
the quality of the product depended totally on the ability of the
person doing the develo~iment. The individual steps in the process
were so interwoven that it was generally impossible to chart the
actual progress. The specifications were usually determined, or at
least extensively modified, while the design was being done. The
design and the coding were often done at the same time; that is really
to say that there was no design. The coding was a monolith and errors
corrected in one section fouled up other sections of the code. No one
therefore had any idea how close the project was to completion. The
old adage of 90% complete for 90% of the project was thought to be a
reality because the programmer himself really could not determine how
close he was to being finished. The documentation usually was never
started until all of the other work was finished and at that point
even the programmer had forgotten how he/she had implemented many of
the functions. It is impossible to manage such a task and the fact
that some software projects were successful was only due to the fact
that good people were doing them and the manager was lucky.

The underlying causes of poor management mentioned above are the
same things that cause software to be very difficult and costly to
maintain. First, coding is not an easy thing to understand at best.
The fact that the documentation was poor meant that the maintenance
people were on their own with little help. That is why it was so
important to have the developers maintain the software. The fact that
the coding constituted a monolith with interdependencies stretching
from beginning to end made it very difficult to modify the code
without introducing new errors.

SOFIWARE ENGINEERING PHILOSOPHY

The philosophy of software engineering is to apply good, well-
defined, logical procedures (what is meant by engineering principles)
to the development of software and to create documentation along with
each step in the development. A part of those procedures creates the
code as modules with no dependencies outside their own boundaries.
This breaks large problems into a series of smaller ones that can be
better understood and managed. All documentation is produced while
the concepts are fresh. It is maintained on a computer for easy
reference and updating and every iten can be traced through all levels
of documentation, right down to the code and test results.

3

NWC T 82-465

one of the fundauental goals of software engineering is to
identify and eliminate errors as early in the life cycle as possible.
Figure 1 illustrates why this is important. The further into the
development of the software, the more costly it is to remove an error.
This is rather obvious since the further along in the development the
more effort has been expended on each item (eg. design,
implementation, test, documentation, etc.).

100-

50-

Relative CostI

TO Correct 20-

Error

I .

10-

I .

5- .

I .

2-

I .

Prel. Detld. Code &eIntgrtn Validtn ertn
Dsgn, Dsgn. Debug

Phase In Which Error Detected

FIGURE 1. .CM C OSTS <4

I • • 4

I1__ __•_

NSWC 7R 82-465

GENERAL REQUIREEN

A Software Engineering Environment should fully integrate
development and cmunication tools. It should have the following
features:

1. A single, compatible storage format for all documents,
programs, and data files, so they can form a fully
integrated data base

2. Software tools where the output of one is in the form
of input for sucessive tools

3. Facilities for reporting and supervision, that allow
quick surveys of progress on schedules and
specifications without special efforts by supervisors
or programmers to generate those surveys

4. All reports from the system designed for readability
and understanding

5. Facilities for ccmunication among programmers,
including both electronic mail and "voice mail"
(electronic storage and forwarding of voice messages)

6. Facilities which force disciplined software development
proceeding directly from the specification and planning
documents

7. Means of updating and annotating programs without
destroying the original, so that a history of how the
program has evolved is preserved

8. Provision for creating pointers that connect new
documents or programs to existing information

9. An information-display management system with which a
user can examine and cross-section the available
information base. For example, the user will be able
to view simultaneously a statement in assembly
language, the high-level language statement that
generated it, the associated portion of the design, and
the original specification of its function.

10. Documentation for publication, derived
straightforwardly and semi-automatically from the
integrated data base. Documentation will not be a
separate and belated activity.

5

NSWC TR 82-465

MiE SOFTWARE LIFE-CYCLE

The stages of a software life-cycle can be defined as follows:

Concept Devel opment

Requirements Specification

Software System Design

Coding and Checkout

Testing

Integration

Operational Test and Evaluation

Deployment/Maintenance<5>. i

CONCEPT DEVELOPMENT

The concepts chase consists of defining the problem that is to be
solved. The primary need in this phase is to provide clear, concise
documentation. The problems and subproblems should be specified in
such a way that it will be possible to trace the solution through each
level of subsequent documentation. This will consist of a computer-
assisted documentation system which allows and requires unique
identification of each problem. At this point consideration of
whether the solution will be totally hardware, totally software run on
a general-purpose computer, or a computer embedded in a system with
appropriate software, is not germane. What often happens is that
feasibility studies are not made and we build solutions for problems
we don' t understand and which often are the wrong problems.

The approach to doing analysis must be as disciplined as that for
doing coding. There are several methods and techniques available
which come under the general heading of structured analysis. Specific
techniques may work best on a particular type of problem. No one
technique will fit all of our work. Tools should be provided to
support those techniques which are needed for our applications.

The output of this chase will be a good, well-analyzed, complete
description of the problem to be solved. It will be stored in a
computer and each aspect of the problem will be uniquely identified.

In many cases one's first association with a project will be
after the concept has already been developed. If this is the case,
one has the choice of putting the "concepts documentation" in

6

NSWC TR 82-465

ccmputer-readable form or ignoring that and starting to automate at
the requirements specification phase.

REQUIREMENTS SPECIFICATION

R. Tausworthe of JPL has defined requirements in the following
way:

A requirement is a statement which clearly and
accurately describes the essential technical
features of a needed capability, along with a
set of goals, constraints, criteria and conditions
to be met.

What one must do is to determine those functions which must be
carried out in order to achieve a solution to the problem. The output
of this phase should tell what must be done to solve the problem but
not how it is to be done. Which of the functions will be done by
hardware, by a computer and its associated software, or by a human
being will be specified. The resources necessary to complete the
project and the high-risk areas will be identified.

It is important that an effective solution be found before any
implementation is attempted. Therefore tools are needed which will
not only assist in the determination of alternate solutions but will
compare the efficacy of those solutions. The object will be to
determine how each proposed solution will operate if it is
implemented. his can be done by modeling, simulating at selected
levels of detail, studying the timing relationships of the functions
in the proposed solutions, by sane means of rapidly prototyping
proposed solutions, or some combination of these.

The SEE should retain each of the proposed solutions and its
evaluation for future consideration of proposed modifications. The
accepted solution should be identified for easy access. Again, as for
all other levels of system description, each function should be
uniquely labeled and be traceable to higher and subsequent lower
levels of documentation. Each function will have identified a set of
tests which will validate its implemention in the system. 7he flow of
data and control between functions will be stored for graphical
display (Functional Flow Diagram).

7

NSWC TR 82-465

The following are functions that should be supported by the SEE
during this phase:

1. A comuter-processed language for describing the
requirements, abstract data structures, and test
requirements

2. Tools for modeling, simulation, and rapid prototyping,
which will take the specification of the system to be
modelled from the database

3. Tools which will assist in the determination of
resources to carry out the project. This will
consist of tools for determining the amount of
physical resources, the number of staff-months,
and the number of calendar months.

SOFIWARE SYSTE4 DESIGN

In this phase the design, or structure, of the software is
developed. The attempt will be to break the system down into modules
which are small enough to be understood easily, contain only functions
which are very closely related and dependent on each other, and do not
depend on any other module except for data. The goal is to design a
system so that any future changes will influence only a small number
of modules and those modules will be easily identifiable.

There are two designs to consider in this phase. There is the
design of the sequences of the functional modules and the design, or
layout, of the data.

The following are the functions that should be supported by the
SEE during this phase:

1. A computer-processed language for describing the design
which provides for a "readable" listing of the design,
consistency checking, completeness checking, and
traceability of functions between higher- and lower-
level documentation

2. Tools for graphically displaying the hierarchy and the
flow of control of the modules

3. Tools for graphically displaying the flow of data
between the modules, generally called a data flow
diagram

8

NSWC TR 82-465

4. Tools for constructing and modifying the structure of
the data for the application programs, which will
prevent duplicate identifiers and will show the
relationship between each piece of data and the
modules.

5. Since the software system will be developed
incrementally the envirornent must have the capability
to add to existing designs and to identify and store
alternate designs (configuration rranagement).

CODING AND CHECKOUT

During coding, the envirorinent must not only support the new
sottware development techniques but as much as possible force
structure on the resultant code and check for conformity to coding
standards. The system should encourage interactive generation of the
code as opposed to writing it down to be keypunched. Automatic
translation of the design language into code should be provided as
extensively as possible. 7he system should assist in the correlation
of coding segments to higher-level documentation. Prompts should be
given for in-line documentation, such as prologues (explanatory
material at the beginning of each module/routine). Facilities for
on-line debugging should be provided. Statistics on the amount of
code generated and the number of modules coded, debugged, and turned
over to the configuration management team should be maintained by the
system.

The SEE should provide the following capabilities:

1. The usual system routines needed to develop code,
such as conpilers, linkers, loaders, etc.

2. Tools for interactive development of software;
full screen editors, syntax directed editors, etc.

3. Simulation of the target machine if not the same

as the host

4. Source language debugging

5. Instrumentation of the code to provide data
extraction when code is executed

6. Context cross reference, i.e., to be able to review
higher levels of documentation which relate to the
section of code being implemented. The system should
determine through its traceability features which
documentation is relevant and display it on cmind.

9

NSWC 1R 82-465

7. Metrics which indicate the size, complexity<6><7>,
performanace, etc. of the modules

8. Analysis tools such as set/use maps, cross reference
maps, etc.

9. Facilities for generating stubs for testing the flow of
control prior to the existence of all modules

10. Static analyzers which check for conformance to
standards, which should be both general and project
specific

11. Error seeding; the ability to insert errors to test
whether the program will operate properly under error
conditions

TESTIN

If one has a separate test group, and this is recommended, the
computer programs making up the system will be turned over to this
group by the developer and the programs must be put together and
tested as a system. If a separate test group does not exist, then it
is advisable to have someone who acts as a Program Secretary who is
responsible for all official versions of the software. It should now
come under official control so that changes will not be made to it
without proper controls. The programs making up the system probably
will be tested one at a time and the tested programs then incorporated
into the system. Stubs may be generated for those units not complete
and tests run on the resultant system. Since there may be errors in
the units requiring them to be turned back to the programmer for
correction, there must be a capability of keeping track of each
version of the units. There must also be a means of identifying which
versions of the units are in each subset of the software system
tested. Some of the capabilities identified under Coding and Checkout
may be used during this phase in order to provide final certification.
The development group may also want to use some of the capabilities
identified for this phase in order to forestall future problems.

The SEE must have the following capabilities to support testing:

1. Static code analyzers to determine conformance to
standards, etc.

2. Test scenario generation, test case generation if
technologically feasible.

10

NS1C 'R 82-465

3. The ability to reference previous test data, make
changes to it, and identify this as another test
case.

4. Automatic comparison of the results of runs and
reporting of the differences.

5. Facilities for "instrumenting" the program for data
and event extraction during execution. Ihen
commanded, the system should autcmatically
instrument the code for use in test coverage
analysis.

6. Test reporting which includes test coverage, tested
and untested requirements, etc.

CONFIGURATION MANAGEMENT

The problems of configuration management are keeping track of
modifications to the baselined software, making sure that none are
made without formal approval, knowing precisely the capabilities of
each version of the software system, and knowing which sites (if more
than one) have which version at any given time.

To carry out this function, the environment must have a data base
management system (DBMS) with the capability of generating good
quality reports. As mentioned in the section on general requirements,
the environment should have a fully integrated data base which
contains all of the information generated from the beginning of
concept development to the death of the program. The PROJECT DATA
BASE will be the foundation on which everything in the environment
will be built. There will need to be a command language which can be
used to create a system of the software from the version numbers of
the modules. There must be convenient methods for keeping track of
change orders, trouble/failure reports, and their status.

PROJECT MANGEM2T CONSIDERATIONS

The project managers must be able to query all data in the data
base needed to manage the project. This includes data needed to
determine project schedules and status, product quality, etc. The
data should be presented in the form of quality reports rather than
isolated data.

11

NSWC TR 82-465

The environment should also have the following capabilities:

1. Management planning, scheduling and tracking tools; for
example, an automated Work Breakdown Structure tool

2. Generating, storing, and retrieving management
informatiLon such as progress reports

3. The ability to generate quality summary reports from
data in any area of the data base.

12

NSC TR 82-465

REFERENCES

<1> "Special Report on Software and Services", DATAMATION, Aug 25,

1981, p66.

<2> DOD Annual Report FY 81, 29 Jan 1981, p245.

<3> F. L. Bauer, "Software Engineering," Information Processiag 71
(1972), North Holland Publishing Co., pp530.

<4> Jensen, R. W., C. C. Tonies, Software Enoineerina. Prentice Hall,
Inc., 1979, p212.

<5> "Catputer Software Life Cycle Management Guide," NAVE.EXINST
5200.23, 1 Mar 1979, p xviii.

<6> Harrison, et. al.,"Applying Software Cmplexity Metrics to
Program Maintenance," COMUTER, Sept 1982.

<7> J. C. Zolnowski, D. B. Simmons; "Taking the Measure of Program
Calexity," AFIPS Conference Proceedi= . Vol. 50, 1981 National
Camputer Conference, pp. 329-336, 1981.

13

NSW T 82-465

BIBLIOGRAPHY

Greenstein, J. S., R. C. and B. H. Willeges, "Hixnan-Ccomputer Dialogue
Design: Hardwiare and Software," 19R1 Fall Tnanstrial Enginerir9
Conference Proceedia. Industrial Engineering & Management Press,
Norcross, Ga. 30092.

Hausen, H., Mullerburg, M., Riddle, W. E., Software Enaineerino
Enviromns A Ribliggra~hy. S. Hunke, Editor, North Holland

Publishing Co., 1981. $
Munson, J. B, "Software Maintainability: A Practical Concern for Life
Cycle Costs," TEEE C&Mipter. Nov 1981.

Singer, A., H. Ledgard, and J. F. Hueras, "7hie Annotated Assistant; A
Step Towards Human Engineering," IEEE Wkansactions on Sgftware
~~z * ' -g Vol. SE-7, No. 4, July 1981.

Stuebing, H. G., A Modern Facility orSoftware Production and
Mainece NADC, Warminister, Pa. 18974.

Willeges, B. H. and R. C. Willeges, "User Considerations in
Comuputer-Based Information Systems," VPT~I.1 Report CSIE-81-2, Sept

14

N9: ' 82R-465

DISRBUTEND

O~uter Sciece Dipartent
P8U Blwbirg, Va. 24061

(Drs. Hance, artman, Linkpust)

Omper Science DopartmentU. o f yan

College Park , Maryland 20742
(Dr. V. Dasili)

Dept of Math and Coopiter Science
James Madison University.
Harrisonburg, Va. 22807

Dept of Applied math and Caqxiter Sciences
University of Virginia
Charlottesville, Va. 22901
(Dr. J. Ortega)

University of Seattle
Dept of Software Engineering
SeattLe, Wash. 98122
(Dr. Kyu Y. Lee)

Dept of Math and Computer Sciences
Mary Washington College
Fredericksburg, Va. 22401

Defense Technical Information Center (12)

Local: List C-1 I
Dahlgren; 34 J. l~mch

F54 P. Brown N51 Harrison

G12 L. Batayte 8431 (6 copies)
K04 20 copiesK105
K14 White Oaks;
R301 8346
K33 Flink K34 (2 copies)
K51 (2 copies) 120
R52 J. Sith, J. Dooley R 42 G. Powell
953 Eber U22 R. Cook
354 oCty t23 J. Cottrell
N2OA, 120 8432 (2 copies) ,
1 3. raters, D. M Xonm1
N22 R. Crouder
N31 G. Stout

(1)

DATE,

FILMED

